Incoming water temp can determine size of collectors, storage

Incoming water temp can determine size of collectors, storage

As you get ready to design a solar thermal system for your home, there’s one factor you may not be considering that could make a bucket load of difference: What’s the beginning temperature of the water you’ll be heating?
In the United States’ northern climes, it’s likely 50°. In warmer, more southern climates, you’re likely beginning with 70° water.
And common sense tells us, the colder the water you start with, the more solar uumph you’ll need.
I’m asked all the time how to design a residential system. And, as I worked on the attached chart, I realized it pretty much tells you the basics of what you need to know – the size of the storage tank and the number of collectors.
This attached chart will give you an idea of what to expect. The chart allows you to determine if, for instance, you’ll be heating an 80-gallon tank in a system sized for up to three people, or a 119-gallon tank sized to serve three to five people. I chose these sizes because they are averages for family-sized systems. These numbers can be easily customized.
So, to read the chart: Say you’ve decided on an 80-gallon tank and you live in a colder area, then you’d chose line 1. And, reading across, it will tell you the number of solar collectors you’d need based on the sizes of the collectors you’d like.
Continuing this example, you decide that your home in Michigan has a large roof area and you’d like the largest collector — the 4’x10’ collector. Based on this chart you’d need two of those large collectors — or 80 square feet of collector real estate — to heat that 80-gallon storage tank.
As someone who lives in a northern climate, I shake my head sometimes knowing that we colder people all need a little extra uumph. But I know that we snow people – I live in northern Utah — will enjoy our hot water all the more.
Just as a side note, the input water temperature also has a bearing on how steep should you tip your collectors, believe it or not. If you live in 70 degree, you’ll living in a 30 to 40° latitude, so you’d use a tilt or angle of 30 to 40° for optimal performance. Likewise, those in the colder climes with colder water probably live in a 40 to50° latitude, therefore using a 40 to 50° tilt or angle.
To download an Excel file of the chart, click here.

Sizing home system based on temp of incoming water, with helpful chart

Sizing home system based on temp of incoming water, with helpful chart

Earlier, I published a chart that helps size a solar hot water system for your home, but after hearing from some people I realized I needed to make it more simple.

So, to back up and provide a bit more information:

This chart shows what system is right for you, using actual sizing logic instead of guessing. (Believe me, I see that more than you’d think.) Instead of a rule of thumb, it considers a southern or northern location in the U.S. to determine what the incoming water temperature might be. The amount of energy you’ll need is based on raising the water temperature from where it starts as it comes into your home. With a little math, we can easily determine how much solar will be needed to fill up the tank, based on the incoming temperature.

The chart lists four choices of collectors with differing measurements. For example, if the load requires two 10-foot collectors and your roof height is only 7-feet tall, you still have several choices to make them fit nicely on your south-facing roof. (Unless you live in Brazil, then please face them north.)

Chart for sizing solar based on temp of incoming water. Click on chart image for full-sized PDF.

Drainback with tankless is less costly, more efficient

Drainback with tankless is less costly, more efficient

Today, as part of our ongoing series of basic solar designs, we look at a drainback system using an efficient solar storage tank and a tankless water heater as backup.

This design is fairly uncomplicated and is, perhaps, the least costly system for residential applications. For all its simplicity, it delivers freeze and overheat protection with water. It also features low heat loss.

The tank is the solar storage and the drainback tank combined. The hot water storage tank I’m using in the drawing is made of expanded polystyrene (EPS), which has an insulation factor of about R5 per inch. Dimensions of the tank are 60 inches in height and 30 inches outside diameter, with 4-inch walls. Usable Btu storage is 81 gallons,  which when filled with solar energy up to 160 degrees equals about 67,000 Btus of energy.

The system has very few components — basically the storage tank, pump, controller and collectors. The tank contains a 50-foot 1″ HX coil. Potable water is drawn through the coil, picking up heat from the contents of the tank. The backup water heating is located after the coil exits the  tank. A tankless gas or electric water heater works well as a backup, or this could be connected to any existing water heater and used as a preheat design.

This system is an excellent choice for the HTP Hydra Smart tankless water heater. That is the tankless water heater I’ve used in the design drawing. For more information on this advanced, modulating tankless, click here.

Like other drainback designs, all plumbing must be sloped from the panels for complete drainage.

Here’s more general information on how tankless water heaters work.